DancePose Assistant: human pose estimation and skeleton based dance evaluation
Please see final-presentation.pdf for an overview of this project
- git submodule init && git submodule update
- Download converted pytorch model.
- Compile the C++ postprocessing:
cd lib/pafprocess; sh make.sh
python demo/picture_demo.py
to run the picture demo.python demo/web_demo.py
to run the web demo.python dance_demo.py
to run the dance pose evaluation demo.
python evaluate/evaluation.py
to evaluate the model on coco val2017 dataset.- It should have
mAP 0.653
for the rtpose, previous rtpose havemAP 0.577
because we do left and right flip for heatmap and PAF for the evaluation. c
model name | mAP | Inference Time |
---|---|---|
[original rtpose] | 0.653 | - |
Download link: rtpose
The code is developed using python 3.6 on Ubuntu 18.04. NVIDIA GPUs are needed. The code is developed and tested using 4 1080ti GPU cards. Other platforms or GPU cards are not fully tested.
cd training; bash getData.sh
to obtain the COCO 2017 images in/data/root/coco/images/
, keypoints annotations in/data/root/coco/annotations/
, make them look like this:
${DATA_ROOT}
|-- coco
|-- annotations
|-- person_keypoints_train2017.json
|-- person_keypoints_val2017.json
|-- images
|-- train2017
|-- 000000000009.jpg
|-- 000000000025.jpg
|-- 000000000030.jpg
|-- ...
|-- val2017
|-- 000000000139.jpg
|-- 000000000285.jpg
|-- 000000000632.jpg
|-- ...
- Modify the data directory in
train/train_VGG19.py
andpython train/train_VGG19.py
- CVPR'17, Realtime Multi-Person Pose Estimation.
All contributions are welcomed. If you encounter any issue (including examples of images where it fails) feel free to open an issue.