Skip to content

yinghuozijin/Patch-Diffusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Patch-Diffusion

This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022.

img_model

Requirements

conda create -n patch_diffusion python=3.6.10
conda install -y pytorch==1.4.0 torchvision==0.5.0 -c pytorch
pip install numpy==1.18.5

Data Preparation

Dataset setup: Follow these instructions.

Patch Diffusion module

You can integrate pd module in your own network.

Pairwise Patch Pair Loss

Pairwise Patch Loss (PPLoss) is to learn representative patch feature.

Related Links

  • CNN-generated images are surprisingly easy to spot...for now [Code]

  • FaceForensics++: Learning to Detect Manipulated Facial Images [Code]

  • DSP-FWA: Dual Spatial Pyramid for Exposing Face Warp Artifacts in DeepFake Videos [Code]

  • kaggle-dfdc [Code]

Citation

If you use our code for your research, please cite the following paper:

@article{zhang2022pd,
  title={Patch Diffusion: A General Module for Face Manipulation Detection},
  author={Baogen Zhang, Sheng Li, Guorui Feng, Zhenxing Qian and Xinpeng Zhang},
  journal={AAAI},
  year={2022}
}

About

Patch-Diffusion Code (AAAI2022)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.3%
  • Python 2.7%