Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Jan 19, 2024
1 parent 4ca02a8 commit eed6cd8
Show file tree
Hide file tree
Showing 11 changed files with 620 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
01df5ed4
e68c0fd6
9 changes: 9 additions & 0 deletions chapters/ch11_cluster.html
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<link href="../chapters/ch12_cluster.html" rel="next">
<link href="../index.html" rel="prev">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
Expand Down Expand Up @@ -145,6 +146,11 @@
<div class="sidebar-item-container">
<a href="../chapters/ch11_cluster.html" class="sidebar-item-text sidebar-link active"><span class="chapter-title">11장 군집분석 개요</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../chapters/ch12_cluster.html" class="sidebar-item-text sidebar-link"><span class="chapter-title">12장 계층적 군집방법</span></a>
</div>
</li>
</ul>
</div>
Expand Down Expand Up @@ -537,6 +543,9 @@ <h2 class="anchored" data-anchor-id="예-11.3">(예 11.3)</h2>
</a>
</div>
<div class="nav-page nav-page-next">
<a href="../chapters/ch12_cluster.html" class="pagination-link">
<span class="nav-page-text"><span class="chapter-title">12장 계층적 군집방법</span></span> <i class="bi bi-arrow-right-short"></i>
</a>
</div>
</nav>
</div> <!-- /content -->
Expand Down
577 changes: 577 additions & 0 deletions chapters/ch12_cluster.html

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
5 changes: 5 additions & 0 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,11 @@
<div class="sidebar-item-container">
<a href="./chapters/ch11_cluster.html" class="sidebar-item-text sidebar-link"><span class="chapter-title">11장 군집분석 개요</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./chapters/ch12_cluster.html" class="sidebar-item-text sidebar-link"><span class="chapter-title">12장 계층적 군집방법</span></a>
</div>
</li>
</ul>
</div>
Expand Down
28 changes: 28 additions & 0 deletions search.json
Original file line number Diff line number Diff line change
Expand Up @@ -19,5 +19,33 @@
"title": "11장 군집분석 개요",
"section": "(예 11.3)",
"text": "(예 11.3)\n상관계수\n\nrow_cor &lt;- cor(t(dat2), use = \"pairwise.complete.obs\", method = \"pearson\")\nrow_cor\n\n [,1] [,2] [,3] [,4] [,5] [,6] [,7]\n [1,] 1.0000000 0.9347195 0.6828741 0.7600371 0.5771595 0.9673518 0.7144034\n [2,] 0.9347195 1.0000000 0.8979182 0.9413798 0.8297018 0.9942708 0.9164427\n [3,] 0.6828741 0.8979182 1.0000000 0.9937702 0.9907060 0.8457246 0.9990286\n [4,] 0.7600371 0.9413798 0.9937702 1.0000000 0.9693748 0.8999271 0.9977160\n [5,] 0.5771595 0.8297018 0.9907060 0.9693748 1.0000000 0.7652812 0.9837496\n [6,] 0.9673518 0.9942708 0.8457246 0.8999271 0.7652812 1.0000000 0.8684181\n [7,] 0.7144034 0.9164427 0.9990286 0.9977160 0.9837496 0.8684181 1.0000000\n [8,] 0.8099343 0.9655028 0.9815576 0.9967479 0.9464324 0.9321377 0.9890283\n [9,] 0.8219949 0.9707253 0.9773556 0.9948498 0.9394895 0.9394895 0.9857309\n[10,] 0.8089800 0.9650783 0.9818670 0.9968776 0.9469560 0.9315479 0.9892671\n [,8] [,9] [,10]\n [1,] 0.8099343 0.8219949 0.8089800\n [2,] 0.9655028 0.9707253 0.9650783\n [3,] 0.9815576 0.9773556 0.9818670\n [4,] 0.9967479 0.9948498 0.9968776\n [5,] 0.9464324 0.9394895 0.9469560\n [6,] 0.9321377 0.9394895 0.9315479\n [7,] 0.9890283 0.9857309 0.9892671\n [8,] 1.0000000 0.9997823 0.9999987\n [9,] 0.9997823 1.0000000 0.9997471\n[10,] 0.9999987 0.9997471 1.0000000\n\n\n표준화한 후 상관계수\n\ns_dat2 &lt;- scale(dat2)\nrow_cor_s &lt;- cor(t(s_dat2), use = \"pairwise.complete.obs\", method = \"pearson\")\nrow_cor_s\n\n [,1] [,2] [,3] [,4] [,5] [,6]\n [1,] 1.0000000 0.9999315 -0.67406561 0.16745765 0.1015587 0.97213475\n [2,] 0.9999315 1.0000000 -0.66537519 0.17898338 0.1131937 0.96932487\n [3,] -0.6740656 -0.6653752 1.00000000 0.61536345 0.6663950 -0.82844400\n [4,] 0.1674577 0.1789834 0.61536345 1.00000000 0.9977886 -0.06832112\n [5,] 0.1015587 0.1131937 0.66639497 0.99778861 1.0000000 -0.13448190\n [6,] 0.9721348 0.9693249 -0.82844400 -0.06832112 -0.1344819 1.00000000\n [7,] -0.8797846 -0.8741613 0.94417672 0.32133338 0.3835649 -0.96670729\n [8,] -0.8006556 -0.8076120 0.09713788 -0.72474074 -0.6773407 -0.63789659\n [9,] -0.7482030 -0.7559160 0.01425163 -0.77939352 -0.7360260 -0.57182171\n[10,] -0.7956097 -0.8026447 0.08879897 -0.73048596 -0.6834783 -0.63142435\n [,7] [,8] [,9] [,10]\n [1,] -0.8797846 -0.80065556 -0.74820299 -0.79560974\n [2,] -0.8741613 -0.80761196 -0.75591598 -0.80264471\n [3,] 0.9441767 0.09713788 0.01425163 0.08879897\n [4,] 0.3213334 -0.72474074 -0.77939352 -0.73048596\n [5,] 0.3835649 -0.67734074 -0.73602598 -0.68347830\n [6,] -0.9667073 -0.63789659 -0.57182171 -0.63142435\n [7,] 1.0000000 0.41959679 0.34286201 0.41197990\n [8,] 0.4195968 1.00000000 0.99655423 0.99996493\n [9,] 0.3428620 0.99655423 1.00000000 0.99721394\n[10,] 0.4119799 0.99996493 0.99721394 1.00000000"
},
{
"objectID": "chapters/ch12_cluster.html#예-12.1",
"href": "chapters/ch12_cluster.html#예-12.1",
"title": "12장 계층적 군집방법",
"section": "(예 12.1)",
"text": "(예 12.1)\n데이터 읽기\n\ndat1 &lt;- read.csv(\"data/ch12_dat1.csv\")\n\ndat2 &lt;- dat1[, -1]\n\n유클리디안 거리\n\nD1 &lt;- dist(dat2)\nD1 &lt;- round(D1, 2)\nD1\n\n 1 2 3 4 5 6 7 8 9\n2 2.24 \n3 11.31 9.22 \n4 7.81 5.83 3.61 \n5 11.40 9.22 1.41 4.12 \n6 1.41 2.24 11.40 8.06 11.31 \n7 10.63 8.60 1.00 2.83 2.24 10.82 \n8 10.05 9.49 9.22 7.21 10.44 11.18 8.25 \n9 11.40 11.18 11.40 9.43 12.65 12.65 10.44 2.24 \n10 12.37 12.08 11.70 10.00 13.00 13.60 10.77 2.83 1.00\n\n\n평균연결법\n\nhc_c &lt;- hclust(D1, method = \"average\")\nplot(hc_c,\n hang = -1, cex = 0.7, main = \"Average linkage with Euclidean distance\",\n ylab = \"Distance\", xlab = \"observation\"\n)"
},
{
"objectID": "chapters/ch12_cluster.html#예-12.2",
"href": "chapters/ch12_cluster.html#예-12.2",
"title": "12장 계층적 군집방법",
"section": "(예 12.2)",
"text": "(예 12.2)\n데이터 읽기\n\ndat1 &lt;- read.csv(\"data/ch12_dat2.csv\")\n\ndat2 &lt;- dat1[, -1]\n\n유클리디안 거리\n\nD1 &lt;- dist(dat2)\nD1 &lt;- round(D1, 2)\nD1\n\n 1 2 3 4 5 6 7\n2 16.12 \n3 2.24 17.00 \n4 18.60 9.06 18.36 \n5 13.15 5.00 14.56 13.15 \n6 5.66 12.17 5.39 13.04 10.82 \n7 15.30 1.41 16.03 8.00 5.39 11.05 \n8 16.64 7.28 16.55 2.24 11.05 11.18 6.08\n\n\n워드 방법\n\nhc_c &lt;- hclust(D1, method = \"ward.D2\")\nplot(hc_c,\n hang = -1, cex = 1, main = \"Ward's linkage with Euclidean distance\",\n ylab = \"Distance\", xlab = \"observation\"\n)"
},
{
"objectID": "chapters/ch12_cluster.html#예-12.3",
"href": "chapters/ch12_cluster.html#예-12.3",
"title": "12장 계층적 군집방법",
"section": "(예 12.3)",
"text": "(예 12.3)\n패키지 로드\n\nlibrary(cluster)\n\n데이터 읽기\n\ndat1 &lt;- read.csv(\"data/ch12_dat3.csv\")\n\ndat2 &lt;- dat1[, -1]\n\n다이아나 방법\n\nclus_diana &lt;- diana(dat2)\n\nplot(clus_diana, which.plot = 2, main = \"Dendrogram of Diana\")"
},
{
"objectID": "chapters/ch12_cluster.html#예-12.4",
"href": "chapters/ch12_cluster.html#예-12.4",
"title": "12장 계층적 군집방법",
"section": "(예 12.4)",
"text": "(예 12.4)\n데이터 로드\n\ndat1 &lt;- read.csv(\"data/ch12_dat2.csv\")\n\ndat2 &lt;- dat1[, -1]\n\n패키지 로드\n\nlibrary(factoextra)\n\nLoading required package: ggplot2\n\n\nWelcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa\n\n\n군집수 결정 - total within sum of square\n\nfviz_nbclust(dat2, kmeans, method = \"wss\", k.max = 5)\n\n\n\n\n군집수 결정 - gap statistics\n\nfviz_nbclust(dat2, kmeans, method = \"gap_stat\", k.max = 5)\n\n\n\n\n군집수 결정 - average silhouette width\n\nfviz_nbclust(dat2, kmeans, method = \"silhouette\", k.max = 5)"
}
]

0 comments on commit eed6cd8

Please sign in to comment.