This is a PyTorch implementation of the paper "Modeling Life-span Brain Age from Large-scale Dataset based on Multi-level Information Fusion", July, 2023.
(1) Create conda env and install pytorch
conda create -n brain python=3.9
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
(2) Install relevant libraries
pip install -r requirements.txt
Age Distribution on Healthy Controls | Age Distribution on Brain Disorders |
---|---|
Predictions on Healthy Controls | Predictions on Brain Disorders |
---|---|
To train the model, run train_threedim_3view_GAF.py
file provided in the repository.
batch_size=8
learning_rate=0.001
weight_decay=0.0001
n_epochs=200
n_exps=1 # num of independent experiments
# ============= Training and Parameter Configuration ==============
python train_threedim_3view_GAF.py \
--batch_size $batch_size \
--lr_s $learning_rate \
--wd_s $weight_decay \
--n_epochs $n_epochs \
--n_exps $n_exps \
To test the model on brain disorders, run test_BDs.py
.
python test_BDs.py