Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain Specific Image Restoration
by Ziqi Zhou, Lei Qi, Yinghuan Shi.
This repository is for our ECCV 2022 paper: Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain-Specific Image Restoration.
git clone https://github.com/zzzqzhou/RAM-DSIR.git
cd RAM-DSIR
Download dataset Fundus (Provided by DoFE) and put images in ./dataset/fundus/
Download our pre-processed dataset Prostate (Originally Provided by SAML) and put data in ./dataset/prostate/
The training and testing process can all be done on one Nvidia RTX 2080Ti GPU with 11 GB memory.
Train on Fundus Dataset (Target Domain 0)
cd code
python -W ignore train.py --data_root ../dataset --dataset fundus --domain_idxs 1,2,3 --test_domain_idx 0 --ram --rec --is_out_domain --consistency --consistency_type kd --save_path ../outdir/fundus/target0 --gpu 0
Test on Fundus Dataset (Target Domain 0)
cd code
python -W ignore test_fundus_slice.py --model_file ../outdir/fundus/target0/final_model.pth --dataset fundus --data_dir ../dataset --datasetTest 0 --test_prediction_save_path ../results/fundus/target0 --save_result --gpu 0
Our implementation is heavily drived from Fed-DG and DoFE. Thanks to their great work.
If you find this project useful for your research, please consider citing:
@inproceedings{zhou2022ram_dsir,
title={Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain Specific Image Restoration},
author={Zhou, Ziqi and Qi, Lei and Shi, Yinghuan},
booktitle={ECCV},
year={2022}
}