Skip to content

Hyperparameters

Saman .E edited this page Jul 9, 2023 · 1 revision

.. Parameter documentation master file.

Parameters

Specifications of the C-GB parameters.

Base model

  • n_estimators : int, default = 100

    • Number of Decision Regressor Tree to build an ensemble.
  • subsample : float, default = 1.0

    • The division of samples for fitting the base learners.
  • max_features : {‘auto’, ‘sqrt’, ‘log2’}, int or float, default= None

    • The number of points for splitting the tree.

      • auto , sqrt >> sqrt(n_features)
      • log2 >> log2(n_features)
      • None >> n_features

cgb_clf

  • loss: {log_loss, ls}, default = log_loss

    • The loss function for optimization. For the Multi-class/Binary classification, it should be deviance.

cgb_reg

  • loss: {log_loss, ls}, default = ls

    • The loss function for optimization. For the regression it should set to ls.
  • metric : {rmse, r2_score}, default = rmse

    • It returns the error of the model. rmse will return the average R2 score.
Clone this wiki locally