-
Notifications
You must be signed in to change notification settings - Fork 0
Regression Multi‐label classification
Saman .E edited this page Jul 9, 2023
·
1 revision
from cgb import cgb_reg
import sklearn.datasets as dts
from sklearn.model_selection import train_test_split
seed = 1
X, y = dts.make_regression(n_samples=100,
n_features=100,
n_targets=3,
random_state=seed)
x_train, x_test, y_train, y_test = train_test_split(X, y,
test_size=0.3,
random_state=seed)
model = cgb_reg(learning_rate=0.1,
subsample=1,
loss='ls',
max_features="sqrt",
n_estimators=100,
max_depth=3,
random_state=seed)
model.fit(x_train, y_train)
model.predict(x_test)
model.score(x_test, y_test)
Return the RMSE for n_outputs
array([164.36658903, 101.0311495 , 166.13994623])