Skip to content

Commit

Permalink
rational commutative monoids (#763)
Browse files Browse the repository at this point in the history
This small PR factors out rational commutative monoids from #623.

---------

Co-authored-by: Fredrik Bakke <[email protected]>
  • Loading branch information
EgbertRijke and fredrik-bakke authored Sep 13, 2023
1 parent 3987828 commit d826323
Show file tree
Hide file tree
Showing 4 changed files with 293 additions and 2 deletions.
2 changes: 2 additions & 0 deletions src/group-theory.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ open import group-theory.orbits-concrete-group-actions public
open import group-theory.orbits-group-actions public
open import group-theory.orbits-monoid-actions public
open import group-theory.orders-of-elements-groups public
open import group-theory.powers-of-elements-commutative-monoids public
open import group-theory.powers-of-elements-groups public
open import group-theory.powers-of-elements-monoids public
open import group-theory.precategory-of-abelian-groups public
Expand All @@ -132,6 +133,7 @@ open import group-theory.products-of-tuples-of-elements-commutative-monoids publ
open import group-theory.quotient-groups public
open import group-theory.quotient-groups-concrete-groups public
open import group-theory.quotients-abelian-groups public
open import group-theory.rational-commutative-monoids public
open import group-theory.representations-monoids public
open import group-theory.saturated-congruence-relations-commutative-monoids public
open import group-theory.saturated-congruence-relations-monoids public
Expand Down
157 changes: 157 additions & 0 deletions src/group-theory/powers-of-elements-commutative-monoids.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
# Powers of elements in commutative monoids

```agda
module group-theory.powers-of-elements-commutative-monoids where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.homomorphisms-commutative-monoids
open import group-theory.powers-of-elements-monoids
```

</details>

The **power operation** on a [monoid](group-theory.monoids.md) is the map
`n x ↦ xⁿ`, which is defined by [iteratively](foundation.iterating-functions.md)
multiplying `x` with itself `n` times.

## Definition

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

power-Commutative-Monoid :
type-Commutative-Monoid M type-Commutative-Monoid M
power-Commutative-Monoid = power-Monoid (monoid-Commutative-Monoid M)
```

## Properties

### `1ⁿ = 1`

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

power-unit-Commutative-Monoid :
(n : ℕ)
power-Commutative-Monoid M n (unit-Commutative-Monoid M) =
unit-Commutative-Monoid M
power-unit-Commutative-Monoid zero-ℕ = refl
power-unit-Commutative-Monoid (succ-ℕ zero-ℕ) = refl
power-unit-Commutative-Monoid (succ-ℕ (succ-ℕ n)) =
right-unit-law-mul-Commutative-Monoid M _ ∙
power-unit-Commutative-Monoid (succ-ℕ n)
```

### `xⁿ⁺¹ = xⁿx`

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

power-succ-Commutative-Monoid :
(n : ℕ) (x : type-Commutative-Monoid M)
power-Commutative-Monoid M (succ-ℕ n) x =
mul-Commutative-Monoid M (power-Commutative-Monoid M n x) x
power-succ-Commutative-Monoid =
power-succ-Monoid (monoid-Commutative-Monoid M)
```

### `xⁿ⁺¹ = xxⁿ`

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

power-succ-Commutative-Monoid' :
(n : ℕ) (x : type-Commutative-Monoid M)
power-Commutative-Monoid M (succ-ℕ n) x =
mul-Commutative-Monoid M x (power-Commutative-Monoid M n x)
power-succ-Commutative-Monoid' =
power-succ-Monoid' (monoid-Commutative-Monoid M)
```

### Powers by sums of natural numbers are products of powers

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

distributive-power-add-Commutative-Monoid :
(m n : ℕ) {x : type-Commutative-Monoid M}
power-Commutative-Monoid M (m +ℕ n) x =
mul-Commutative-Monoid M
( power-Commutative-Monoid M m x)
( power-Commutative-Monoid M n x)
distributive-power-add-Commutative-Monoid =
distributive-power-add-Monoid (monoid-Commutative-Monoid M)
```

### If `x` commutes with `y`, then powers distribute over the product of `x` and `y`

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

distributive-power-mul-Commutative-Monoid :
(n : ℕ) {x y : type-Commutative-Monoid M}
(H : mul-Commutative-Monoid M x y = mul-Commutative-Monoid M y x)
power-Commutative-Monoid M n (mul-Commutative-Monoid M x y) =
mul-Commutative-Monoid M
( power-Commutative-Monoid M n x)
( power-Commutative-Monoid M n y)
distributive-power-mul-Commutative-Monoid =
distributive-power-mul-Monoid (monoid-Commutative-Monoid M)
```

### Powers by products of natural numbers are iterated powers

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

power-mul-Commutative-Monoid :
(m n : ℕ) {x : type-Commutative-Monoid M}
power-Commutative-Monoid M (m *ℕ n) x =
power-Commutative-Monoid M n (power-Commutative-Monoid M m x)
power-mul-Commutative-Monoid =
power-mul-Monoid (monoid-Commutative-Monoid M)
```

### Commutative-Monoid homomorphisms preserve powers

```agda
module _
{l1 l2 : Level} (M : Commutative-Monoid l1)
(N : Commutative-Monoid l2) (f : type-hom-Commutative-Monoid M N)
where

preserves-powers-hom-Commutative-Monoid :
(n : ℕ) (x : type-Commutative-Monoid M)
map-hom-Commutative-Monoid M N f (power-Commutative-Monoid M n x) =
power-Commutative-Monoid N n (map-hom-Commutative-Monoid M N f x)
preserves-powers-hom-Commutative-Monoid =
preserves-powers-hom-Monoid
( monoid-Commutative-Monoid M)
( monoid-Commutative-Monoid N)
( f)
```
5 changes: 3 additions & 2 deletions src/group-theory/powers-of-elements-monoids.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,8 +23,9 @@ open import group-theory.monoids

## Idea

The power operation on a monoid is the map `n x ↦ xⁿ`, which is defined by
iteratively multiplying `x` with itself `n` times.
The **power operation** on a [monoid](group-theory.monoids.md) is the map
`n x ↦ xⁿ`, which is defined by [iteratively](foundation.iterating-functions.md)
multiplying `x` with itself `n` times.

## Definition

Expand Down
131 changes: 131 additions & 0 deletions src/group-theory/rational-commutative-monoids.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
# Rational commutative monoids

```agda
module group-theory.rational-commutative-monoids where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.monoids
open import group-theory.powers-of-elements-commutative-monoids
```

</details>

## Idea

A **rational commutative monoid** is a
[commutative monoid](group-theory.commutative-monoids.md) `(M,0,+)` in which the
map `x ↦ nx` is invertible for every
[natural number](elementary-number-theory.natural-numbers.md) `n > 0`. This
condition implies that we can invert the natural numbers in `M`, which are the
elements of the form `n1` in `M`.

Note: Since we usually write commutative monoids multiplicatively, the condition
that a commutative monoid is rational is that the map `x ↦ xⁿ` is invertible for
every natural number `n > 0`. However, for rational commutative monoids we will
write the binary operation additively.

## Definition

### The predicate of being a rational commutative monoid

```agda
module _
{l : Level} (M : Commutative-Monoid l)
where

is-rational-prop-Commutative-Monoid : Prop l
is-rational-prop-Commutative-Monoid =
Π-Prop
( λ n
is-equiv-Prop (power-Commutative-Monoid M (succ-ℕ n)))

is-rational-Commutative-Monoid : UU l
is-rational-Commutative-Monoid =
type-Prop is-rational-prop-Commutative-Monoid

is-prop-is-rational-Commutative-Monoid :
is-prop is-rational-Commutative-Monoid
is-prop-is-rational-Commutative-Monoid =
is-prop-type-Prop is-rational-prop-Commutative-Monoid
```

### Rational commutative monoids

```agda
Rational-Commutative-Monoid : (l : Level) UU (lsuc l)
Rational-Commutative-Monoid l =
Σ (Commutative-Monoid l) is-rational-Commutative-Monoid

module _
{l : Level} (M : Rational-Commutative-Monoid l)
where

commutative-monoid-Rational-Commutative-Monoid : Commutative-Monoid l
commutative-monoid-Rational-Commutative-Monoid = pr1 M

monoid-Rational-Commutative-Monoid : Monoid l
monoid-Rational-Commutative-Monoid =
monoid-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

type-Rational-Commutative-Monoid : UU l
type-Rational-Commutative-Monoid =
type-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

add-Rational-Commutative-Monoid :
(x y : type-Rational-Commutative-Monoid)
type-Rational-Commutative-Monoid
add-Rational-Commutative-Monoid =
mul-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

zero-Rational-Commutative-Monoid : type-Rational-Commutative-Monoid
zero-Rational-Commutative-Monoid =
unit-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

associative-add-Rational-Commutative-Monoid :
(x y z : type-Rational-Commutative-Monoid)
add-Rational-Commutative-Monoid
( add-Rational-Commutative-Monoid x y)
( z) =
add-Rational-Commutative-Monoid
( x)
( add-Rational-Commutative-Monoid y z)
associative-add-Rational-Commutative-Monoid =
associative-mul-Commutative-Monoid
commutative-monoid-Rational-Commutative-Monoid

left-unit-law-add-Rational-Commutative-Monoid :
(x : type-Rational-Commutative-Monoid)
add-Rational-Commutative-Monoid zero-Rational-Commutative-Monoid x = x
left-unit-law-add-Rational-Commutative-Monoid =
left-unit-law-mul-Commutative-Monoid
commutative-monoid-Rational-Commutative-Monoid

right-unit-law-add-Rational-Commutative-Monoid :
(x : type-Rational-Commutative-Monoid)
add-Rational-Commutative-Monoid x zero-Rational-Commutative-Monoid = x
right-unit-law-add-Rational-Commutative-Monoid =
right-unit-law-mul-Commutative-Monoid
commutative-monoid-Rational-Commutative-Monoid

multiple-Rational-Commutative-Monoid :
type-Rational-Commutative-Monoid type-Rational-Commutative-Monoid
multiple-Rational-Commutative-Monoid =
power-Commutative-Monoid commutative-monoid-Rational-Commutative-Monoid

is-rational-Rational-Commutative-Monoid :
is-rational-Commutative-Monoid
commutative-monoid-Rational-Commutative-Monoid
is-rational-Rational-Commutative-Monoid = pr2 M
```

0 comments on commit d826323

Please sign in to comment.