Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lukas hustle #1

Open
wants to merge 16 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
add test for resnets
LukasFrankenQ committed May 12, 2020
commit 1ed72fdf3c220f491ec62e1d2ee2688c56fe86fc
119 changes: 119 additions & 0 deletions tests/dist_acc_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from collections import OrderedDict
import sys
import numpy as np
sys.path += ['../']
sys.path += ['../utils/']
from models.cifar10.models import Wide_ResNet, resnet110, resnet20, resnet32
from models.cifar10.models import resnet44, resnet56, resnet1202
import config as cf
from attacks import *
from torch.nn.parallel import DistributedDataParallel as DDP

def mean(liste):
summe = 0.
for el in liste:
summe += el
return summe/len(liste)

get_accuracy = False
get_distances = True
device = torch.device("cuda")
num_examples = 10
batch_size = 10
eps = 1.
alpha = 1e-3
max_iter = 10000
steps = np.zeros(num_examples)
criterion = nn.CrossEntropyLoss()
adv = Adversary('fgsm', device)
model_address = '../models/cifar10/trained_models/noisy_0.1_WideResNet_28_10_run_1.pth'
#model_address = '../models/cifar10/trained_models/ResNet_1202.th'


state_dict = torch.load(model_address)

"""
####### the following is for ResNet loading only #####
new_state_dict = OrderedDict()
for k, v in state_dict['state_dict'].items():
name = k[7:]
new_state_dict[name] = v
######################################################
"""

model = Wide_ResNet(28, 10, 0.3, 10).to(device)
model.load_state_dict(state_dict)

#model = resnet1202().to(device)
#model.load_state_dict(new_state_dict)

model.eval()

transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(cf.mean['cifar10'], cf.std['cifar10']),
])

dataset = torchvision.datasets.CIFAR10(root='../data/datasets/cifar10', train=False, download=False, transform=transform)
loader = torch.utils.data.DataLoader(dataset, batch_size=num_examples, shuffle=False)
test_loader = torch.utils.data.DataLoader(dataset, batch_size = 100, shuffle=False)

it = iter(loader)
data = next(it)
x, y = data[0].to(device), data[1].to(device)

if get_distances:
distances = []
step_counter = []

for i in range(int(num_examples/batch_size)):
hold, _, steps = adv.get_distances(model, x[i*batch_size:(i+1)*batch_size], y[i*batch_size:(i+1)*batch_size], device,
eps=eps, alpha=alpha, max_iter=max_iter)
distances += hold.tolist()
step_counter += steps.tolist()
print('recently found distances: ', hold.tolist())
print('in eps {} iteration {}/{} with mean {}'.format(eps, i+1, int(num_examples/batch_size), mean(distances[-batch_size:])))

print('distances: ', distances)
print('steps taken: ', step_counter)

avg_distances = mean(distances)

f = open('distances.txt', 'w')
for i in range(num_examples):
f.write(str(eps)+' '+str(distances[i])+' '+str(step_counter[i])+'\n')
f.close()


if get_accuracy:
with torch.no_grad():
# testing
model.eval()
#self.training = False
loss = 0.
correct = 0
total = 0
for curr_batch, (x, y) in enumerate(test_loader):
x_var, y_var = Variable(x), Variable(y)
x_var, y_var = x_var.to(device), y_var.to(device)
outcome = model(x_var)
curr_loss = criterion(outcome, y_var)
loss += curr_loss
_, pred = torch.max(outcome.data, 1)
correct += pred.eq(y_var.data).cpu().sum()
total += y_var.size(0)
acc = 100.*correct/total
print("\n \t\t\tLoss: %.4f Acc@1: %.2f%%" %(loss.item(), acc))

f = open('accuracy.txt', 'w')
f.write(str(acc.item()))
f.close()


print('Experiment conducted, find results in saves!')