Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lukas hustle #1

Open
wants to merge 16 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file not shown.
Binary file added data/saved_models/mnist/noisy_0.4_LeNet.pth
Binary file not shown.
Binary file added data/saved_models/mnist/normal_LeNet.pth
Binary file not shown.
187 changes: 187 additions & 0 deletions explorations/mnist/cap_vol_stats.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
import sys
sys.path.append("../../")
import math
import torch
import numpy as np
import torchvision
from torchvision.transforms import transforms
from torch.autograd import Variable
from torch.utils.tensorboard import SummaryWriter
from torch.distributions.normal import Normal
from torch.distributions.multivariate_normal import MultivariateNormal
import torch.nn as nn
from models.mnist.models import LeNet5, CNN

from utils.attacks import Adversary
import utils.config as cf
from utils.utils import get_one_vol, get_one_cap


def mean_dist(x, radius, dist_samples=500, dist_iter=2):
dim = 28 * 28
dim_sqrt = math.sqrt(dim)
sigma = radius / dim_sqrt
dists = torch.zeros(dist_samples).float().to(device)
for i in range(dist_iter):
x_exp_orig = x.repeat(dist_samples, 1, 1, 1)
y_exp = y.repeat(dist_samples)
x_exp = x_exp_orig + torch.randn_like(x_exp_orig) * sigma
#print((x_exp-x_exp_orig).norm(dim=1).norm(dim=1).norm(dim=1))
dists += adv.get_distances(model, x_exp, y_exp, device, eps=1., alpha=6e-1)[0] # original for pgd_linf 1e-3
#dist = adv.get_distances(model, x, y, device, eps=1.0e-1, alpha=1.0e-3)[0]
dists /= dist_iter
return dists


if __name__=="__main__":
print("Test Distance")
torch.manual_seed(0)
transform = transforms.Compose([
#transforms.RandomCrop(32, padding=4),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize(cf.mean['cifar10'], cf.std['cifar10']),
])
num_examples = 1000
batch_size = 1
dataset = torchvision.datasets.MNIST(root='../../data/datasets/mnist/', train=False, download=True, transform=transform)
loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False)

arch = "CNN"
curr_type = "data extraction"
curr_model = "adversarial_fgsm"
model_path = str("../../train/mnist/trained_models/"+curr_model+"_"+arch+".pth")

device = "cuda"
torch.cuda.set_device(0)
if arch == 'LeNet':
model = LeNet5().to(device)
elif arch == 'CNN':
model = CNN.to(device)
model.load_state_dict(torch.load(model_path))
#model = nn.DataParallel(model)
model.eval()

dim = 28 * 28
dim_sqrt = math.sqrt(dim)
radius_init = torch.tensor(30.)
radius_step = torch.tensor(0.1)
radius_iter = 1000
radius = torch.tensor(40.)
alpha = 2.0e0
num_steps = int(100 * alpha)
step = 1.0e-1 * radius / (dim_sqrt * math.sqrt(alpha))
c = 0.1

normal_1d = Normal(torch.tensor(0.0), torch.tensor(1.0))
t = torch.tensor(num_steps * step**2)
rmsd = torch.sqrt(dim * t)
#dist = c * rmsd

print("Runtime: ", t)
print("RMSD: ", rmsd)
#print("Dist to hyperplane", dist)

it = iter(loader)
adv = Adversary("pgd_linf", device)

vol_data = []
cap_data = []
tau_data = []
dist_data_bogdan_method = []
dist_data_adv_method = []
radius_data = []
iso_bound_data = []

for i in range(num_examples):
data = next(it)
x, y = data[0].to(device), data[1].to(device)
radius = radius_init.clone()
sigma = radius / dim_sqrt
vol = 0.
vol_iter = 3
r_iter = 0

upper = 0.011
lower = 0.009

while (vol > upper) or (vol < lower):
if vol > upper:
radius -= radius_step
else:
radius += radius_step

sigma = radius / dim_sqrt
vol = 0.
for j in range(vol_iter):
vol += get_one_vol(model, x, y, device,
radius=radius, num_samples=600, sample_full_ball=True)
vol = torch.tensor(vol / vol_iter)
r_iter += 1
if r_iter > radius_iter:
break
#dists = mean_dist(x, radius)
dists = torch.mean(mean_dist(x, radius))
#dist = adv.get_distances(model, x, y, device, eps=1.0e-1, alpha=1.0e-3, max_iter=100)[0]

step = 1.0e-1 * radius / (dim_sqrt * math.sqrt(alpha))
t = torch.tensor(num_steps * step**2)
rmsd = torch.sqrt(dim * t)
cap = 0.
cap_iter = 2
for j in range(cap_iter):
cap += get_one_cap(model, x, y, device,
step=step, num_steps=num_steps, num_walks=1000, j="")
cap = torch.tensor(cap / cap_iter)

iso_bound = 0
if vol < 0.5:
iso_bound = -sigma * normal_1d.icdf(vol)

vol_data += [vol.data]
cap_data += [cap.data]
tau_data += [cap.data/vol.data]
dist_data_bogdan_method += [dists.cpu().detach().numpy()]
#dist_data_adv_method += [dist.cpu().detach().numpy()]
radius_data += [radius.data]
iso_bound_data += [iso_bound]

if (i+1) % 5 == 0:
np.save("saves/vol_"+curr_model+"_"+arch, np.array(vol_data))
np.save("saves/cap_"+curr_model+"_"+arch, np.array(cap_data))
np.save("saves/distance_"+curr_model+"_"+arch, np.array(dist_data_bogdan_method))
#np.save("saves/testing_distance_normal_LeNet", np.array(dist_data_adv_method))
np.save("saves/radius_"+curr_model+"_"+arch, np.array(radius_data))
np.save('saves/iso_bounds_'+curr_model+'_'+arch, np.array(iso_bound_data))

#print("Dist to Hyperplane ", dist)
#print("Sigma ", sigma)
#print("rmsq ", rmsd)
print("Radius of Ball ", radius)
#print("Initial Radius ", radius_init)
print("Vol ", vol)
print("Cap ", cap)
print("Tau", cap/vol)
print("Dist bogdan: ", dists)
#print("Dist adv: ", dist)
print("Isoperimetric Bound:", iso_bound)
#print("BM reaches sphere: ", rmsd)
print("ratio iso v avg dist bogdan: ", dists / iso_bound)
#print("ratio iso v avg dist adv: ", iso_bound / dist)
#print("Mean Dist", dists.mean())
#print("Dist from center", dist)
print("------------- "+arch+" -- "+curr_model+" --------------- "+curr_type+" --------")
"""
f = open('saves/cap_vol_tau_untrained_LeNet.txt', 'w')
for i in range(num_examples):
f.write(str(i+1)+' '+
str(cap_data[i].item())+' '+
str(vol_data[i].item())+' '+
str(tau_data[i].item())+' '+
str(radius_data[i].item())+'\n'
)
f.close()
"""



Loading