Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ray Integration to Stacks #52

Merged
merged 5 commits into from
Feb 12, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions dapr-integration/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,16 +7,16 @@ Please use the following command to deploy Dapr using `idpbuilder`:
```bash
idpbuilder create \
--use-path-routing \
--p https://github.com/cnoe-io/stacks//dapr-integrations
-p https://github.com/cnoe-io/stacks//dapr-integrations \
```

Notice that you can add Dapr to the reference implementation:

```bash
idpbuilder create \
--use-path-routing \
--p https://github.com/cnoe-io/stacks//ref-implementation
--p https://github.com/cnoe-io/stacks//dapr-integrations
-p https://github.com/cnoe-io/stacks//ref-implementation \
-p https://github.com/cnoe-io/stacks//dapr-integrations
```

## What is installed?
Expand Down
31 changes: 31 additions & 0 deletions ray-integration/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# Ray Integrations

`idpBuilder` is extensible to install Ray Operator for Serving machine learning (ML) models at scale. This integration will help us Ray Kubernetes Operator integrated into our platform which simplifies and accelerates the serving of ML models.

Please use the following command to deploy ray using `idpbuilder`:

```bash
idpbuilder create \
--use-path-routing \
-p https://github.com/cnoe-io/stacks//ray-integration
```

Notice that you can add Ray to the reference implementation:

```bash
idpbuilder create \
--use-path-routing \
-p https://github.com/cnoe-io/stacks//ref-implementation \
-p https://github.com/cnoe-io/stacks//ray-integration
```

## What is installed?

1. Ray Operator CRDs
2. Ray Operator

Once installed, you will have Ray Operator and Ray Serve components to serve the ML model and LLMs.

For more information, check our module [here](https://catalog.us-east-1.prod.workshops.aws/modernengg/en-US/60-aimldelivery/63-section4-ml-model-use-case) for a step by step instructions on Serving ML Models via Internal Developer Platforms with an example.


23 changes: 23 additions & 0 deletions ray-integration/ray-operator-crds.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: ray-operator-crds
namespace: argocd
labels:
env: dev
finalizers:
- resources-finalizer.argocd.argoproj.io
spec:
project: default
source:
repoURL: https://github.com/ray-project/kuberay
targetRevision: v1.1.1
path: helm-chart/kuberay-operator/crds
destination:
server: "https://kubernetes.default.svc"
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- Replace=true
26 changes: 26 additions & 0 deletions ray-integration/ray-operator.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: ray-operator
namespace: argocd
labels:
env: dev
finalizers:
- resources-finalizer.argocd.argoproj.io
spec:
project: default
source:
repoURL: https://github.com/ray-project/kuberay
targetRevision: v1.1.1
path: helm-chart/kuberay-operator
helm:
skipCrds: true
destination:
server: https://kubernetes.default.svc
namespace: ray
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ spec:
- ./basic/template.yaml
- ./argo-workflows/template.yaml
- ./app-with-bucket/template.yaml
- ./ray-serve/template-ray-serve.yaml
---
apiVersion: backstage.io/v1alpha1
kind: Location
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
import os
from typing import Dict

import torch
from filelock import FileLock
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torchvision.transforms import Normalize, ToTensor
from tqdm import tqdm

import ray.train
from ray.train import ScalingConfig
from ray.train.torch import TorchTrainer
import ray


def get_dataloaders(batch_size):
# Transform to normalize the input images
transform = transforms.Compose([ToTensor(), Normalize((0.5,), (0.5,))])

with FileLock(os.path.expanduser("~/data.lock")):
# Download training data from open datasets
training_data = datasets.FashionMNIST(
root="~/data",
train=True,
download=True,
transform=transform,
)

# Download test data from open datasets
test_data = datasets.FashionMNIST(
root="~/data",
train=False,
download=True,
transform=transform,
)

# Create data loaders
train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=batch_size)

return train_dataloader, test_dataloader


# Model Definition
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(512, 512),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(512, 10),
nn.ReLU(),
)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits


def train_func_per_worker(config: Dict):
lr = config["lr"]
epochs = config["epochs"]
batch_size = config["batch_size_per_worker"]

# Get dataloaders inside the worker training function
train_dataloader, test_dataloader = get_dataloaders(batch_size=batch_size)

# [1] Prepare Dataloader for distributed training
# Shard the datasets among workers and move batches to the correct device
# =======================================================================
train_dataloader = ray.train.torch.prepare_data_loader(train_dataloader)
test_dataloader = ray.train.torch.prepare_data_loader(test_dataloader)

model = NeuralNetwork()

# [2] Prepare and wrap your model with DistributedDataParallel
# Move the model to the correct GPU/CPU device
# ============================================================
model = ray.train.torch.prepare_model(model)

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)

# Model training loop
for epoch in range(epochs):
if ray.train.get_context().get_world_size() > 1:
# Required for the distributed sampler to shuffle properly across epochs.
train_dataloader.sampler.set_epoch(epoch)

model.train()
for X, y in tqdm(train_dataloader, desc=f"Train Epoch {epoch}"):
pred = model(X)
loss = loss_fn(pred, y)

optimizer.zero_grad()
loss.backward()
optimizer.step()

model.eval()
test_loss, num_correct, num_total = 0, 0, 0
with torch.no_grad():
for X, y in tqdm(test_dataloader, desc=f"Test Epoch {epoch}"):
pred = model(X)
loss = loss_fn(pred, y)

test_loss += loss.item()
num_total += y.shape[0]
num_correct += (pred.argmax(1) == y).sum().item()

test_loss /= len(test_dataloader)
accuracy = num_correct / num_total

# [3] Report metrics to Ray Train
# ===============================
ray.train.report(metrics={"loss": test_loss, "accuracy": accuracy})


def train_fashion_mnist(num_workers=5, use_gpu=False):
global_batch_size = 32

train_config = {
"lr": 1e-3,
"epochs": 1, # artificially set low to finish quickly
"batch_size_per_worker": global_batch_size // num_workers,
}

# Configure computation resources
scaling_config = ScalingConfig(num_workers=num_workers, use_gpu=use_gpu)

# Initialize a Ray TorchTrainer
trainer = TorchTrainer(
train_loop_per_worker=train_func_per_worker,
train_loop_config=train_config,
scaling_config=scaling_config,
)

# [4] Start distributed training
# Run `train_func_per_worker` on all workers
# =============================================
result = trainer.fit()
print(f"Training result: {result}")


if __name__ == "__main__":
ray.init("auto")
train_fashion_mnist(num_workers=10, use_gpu=False)
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
---
apiVersion: backstage.io/v1alpha1
kind: Component
metadata:
name: ${{values.name | dump}}
description: This is for Ray Serve
annotations:
backstage.io/kubernetes-label-selector: 'entity-id=${{values.name}}'
backstage.io/kubernetes-namespace: argo
argocd/app-name: ${{values.name | dump}}
argo-workflows.cnoe.io/label-selector: env=dev,entity-id=${{values.name}}
argo-workflows.cnoe.io/cluster-name: local
apache-ray.cnoe.io/label-selector: env=dev,entity-id=${{values.name}}
apache-ray.cnoe.io/cluster-name: local
spec:
owner: guest
lifecycle: experimental
type: service
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Make sure to increase resource requests and limits before using this example in production.
apiVersion: ray.io/v1
kind: RayService
metadata:
name: "ray-service-${{values.name}}"
spec:
# serveConfigV2 takes a yaml multi-line scalar, which should be a Ray Serve multi-application config. See https://docs.ray.io/en/latest/serve/multi-app.html.
serveConfigV2: |
applications:
- name: text_ml_app
import_path: text_ml.app
route_prefix: /summarize_translate
runtime_env:
working_dir: "${{values.rayServeFile}}"
pip:
- torch
- transformers
deployments:
- name: Translator
num_replicas: 4
ray_actor_options:
num_cpus: 0.2
user_config:
language: french
- name: Summarizer
num_replicas: 4
ray_actor_options:
num_cpus: 0.2
rayClusterConfig:
rayVersion: '2.34.0' # should match the Ray version in the image of the containers
enableInTreeAutoscaling: true
autoscalerOptions:
upscalingMode: Conservative
idleTimeoutSeconds: 120
######################headGroupSpecs#################################
# Ray head pod template.
headGroupSpec:
# The `rayStartParams` are used to configure the `ray start` command.
# See https://github.com/ray-project/kuberay/blob/master/docs/guidance/rayStartParams.md for the default settings of `rayStartParams` in KubeRay.
# See https://docs.ray.io/en/latest/cluster/cli.html#ray-start for all available options in `rayStartParams`.
rayStartParams:
dashboard-host: '0.0.0.0'
#pod template
template:
spec:
containers:
- name: ray-head
image: rayproject/ray:2.34.0
resources:
limits:
cpu: 1
memory: 1Gi
requests:
cpu: 1
memory: 1Gi
ports:
- containerPort: 6379
name: gcs-server
- containerPort: 8265 # Ray dashboard
name: dashboard
- containerPort: 10001
name: client
- containerPort: 8000
name: serve
workerGroupSpecs:
# the pod replicas in this group typed worker
- replicas: 1
minReplicas: 1
maxReplicas: 5
# logical group name, for this called small-group, also can be functional
groupName: small-group
# The `rayStartParams` are used to configure the `ray start` command.
# See https://github.com/ray-project/kuberay/blob/master/docs/guidance/rayStartParams.md for the default settings of `rayStartParams` in KubeRay.
# See https://docs.ray.io/en/latest/cluster/cli.html#ray-start for all available options in `rayStartParams`.
rayStartParams: {}
#pod template
template:
spec:
containers:
- name: ray-worker # must consist of lower case alphanumeric characters or '-', and must start and end with an alphanumeric character (e.g. 'my-name', or '123-abc'
image: rayproject/ray:2.34.0
lifecycle:
preStop:
exec:
command: ["/bin/sh","-c","ray stop"]
resources:
limits:
cpu: "1"
memory: "4Gi"
requests:
cpu: "500m"
memory: "2Gi"
Loading
Loading