- GeoBEV is accepted by AAAI 2025. The paper is available at arxiv.
Config | mAP | NDS | Download |
---|---|---|---|
GeoBEV-R50-nuImage-CBGS | 0.430 | 0.546 | model |
GeoBEV-R50-nuImage-CBGS-Longterm | 0.479 | 0.575 | model |
GeoBEV-R101-nuImage-CBGS-Longterm | 0.526 | 0.615 | model |
a. Create a conda virtual environment and activate it.
conda create -n geobev python=3.8 -y
conda activate geobev
b. Install PyTorch and torchvision following the official instructions.
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
c. Install GeoBEV as mmdet3d.
pip install mmcv-full==1.5.3
pip install mmdet==2.27.0
pip install mmsegmentation==0.25.0
pip install -e .
GeoBEV
├── data
│ ├── nuscenes
│ │ ├── lidarseg
│ │ ├── maps
│ │ ├── samples
│ │ ├── samples_instance_mask
│ │ ├── samples_point_label
│ │ ├── sweeps
│ │ ├── v1.0-test
| | ├── v1.0-trainval
│ │ ├── geobev-nuscenes_infos_train.pkl
│ │ ├── geobev-nuscenes_infos_val.pkl
a. Download nuScenes 3D detection data HERE and unzip all zip files.
b. The fold samples_instance_mask
includes the instance masks of nuScenes images, which are predicted by the HTC model pretrained on nuImages dataset. The prepared data can be downloaded HERE.
c. Create the pkl for GeoBEV by running
python tools/create_data_bevdet.py
d. Download nuScenes-lidarseg annotations HERE and put it under GeoBEV/data/nuscenes/
. Create depth and semantic labels from point cloud by running:
python tools/generate_point_label.py
Download the backbones pretrained on nuImages dataset HERE and put them under GeoBEV/ckpts
. Then train the GeoBEV model following:
bash tools/dist_train.sh configs/geobev/geobev-r50-nuimage-cbgs.py 8
bash tools/dist_test.sh configs/geobev/geobev-r50-nuimage-cbgs.py work_dirs/geobev-r50-nuimage-cbgs/epoch_20_ema.pth 8 --eval bbox
This project is not possible without multiple great open-sourced code bases. We list some notable examples below.
If GeoBEV is helpful for your research, please consider citing the following BibTeX entry.
@article{zhang2024geobev,
title={Geobev: Learning geometric bev representation for multi-view 3d object detection},
author={Zhang, Jinqing and Zhang, Yanan and Qi, Yunlong and Fu, Zehua and Liu, Qingjie and Wang, Yunhong},
journal={arXiv preprint arXiv:2409.01816},
year={2024}
}