Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

slice operator implementation for webgpu native #23264

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
262 changes: 262 additions & 0 deletions onnxruntime/core/providers/webgpu/tensor/slice.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#include "core/common/inlined_containers.h"
#include "core/providers/webgpu/tensor/slice.h"
#include "core/providers/cpu/tensor/utils.h"
#include "core/providers/webgpu/shader_helper.h"
#include "core/providers/webgpu/webgpu_supported_types.h"

namespace onnxruntime {
namespace webgpu {

ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Slice,
kOnnxDomain,
1, 9,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create()).TypeConstraint("T", WebGpuSupportedFloatTypes()),
Slice);

ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Slice,
kOnnxDomain,
10, 10,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create()).TypeConstraint("T", WebGpuSupportedFloatTypes()).InputMemoryType(OrtMemTypeCPU, 1).InputMemoryType(OrtMemTypeCPU, 2).InputMemoryType(OrtMemTypeCPU, 3).InputMemoryType(OrtMemTypeCPU, 4),
prathikr marked this conversation as resolved.
Show resolved Hide resolved
Slice);

ONNX_OPERATOR_VERSIONED_KERNEL_EX(
Slice,
kOnnxDomain,
11, 12,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create()).TypeConstraint("T", WebGpuSupportedFloatTypes()).InputMemoryType(OrtMemTypeCPU, 1).InputMemoryType(OrtMemTypeCPU, 2).InputMemoryType(OrtMemTypeCPU, 3).InputMemoryType(OrtMemTypeCPU, 4),
Slice);

ONNX_OPERATOR_KERNEL_EX(
Slice,
kOnnxDomain,
13,
kWebGpuExecutionProvider,
(*KernelDefBuilder::Create()).TypeConstraint("T", WebGpuSupportedFloatTypes()).InputMemoryType(OrtMemTypeCPU, 1).InputMemoryType(OrtMemTypeCPU, 2).InputMemoryType(OrtMemTypeCPU, 3).InputMemoryType(OrtMemTypeCPU, 4),
Slice);

Status SliceProgram::GenerateShaderCode(ShaderHelper& shader) const {
const ShaderVariableHelper& input = shader.AddInput("input", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias);
const ShaderVariableHelper& output = shader.AddOutput("output", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias);

shader.MainFunctionBody() << shader.GuardAgainstOutOfBoundsWorkgroupSizes("uniforms.output_size")
<< "let output_indices = " << output.OffsetToIndices("global_idx") << ";\n"
<< "var input_indices: input_indices_t;\n"
<< "var carry = 0u;\n";

for (auto i = input.Rank() - 1; i >= 0; i--) {
prathikr marked this conversation as resolved.
Show resolved Hide resolved
std::string input_shape_i = absl::StrCat("input_shape_", i);
std::string steps_i = absl::StrCat("steps_", i);
std::string starts_i = absl::StrCat("starts_", i);
std::string output_index_i = absl::StrCat("output_index_", i);
std::string input_index_i = absl::StrCat("input_index_", i);

Check warning on line 59 in onnxruntime/core/providers/webgpu/tensor/slice.cc

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <string> for string [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webgpu/tensor/slice.cc:59: Add #include <string> for string [build/include_what_you_use] [4]

shader.MainFunctionBody() << "let " << input_shape_i << " = " << input.IndicesGet("uniforms.input_shape", i) << ";\n"
<< "let " << steps_i << " = " << input.IndicesGet("uniforms.steps", i) << ";\n"
<< "let " << starts_i << " = " << input.IndicesGet("uniforms.starts", i) << ";\n"
<< "var " << output_index_i << " = " << output.IndicesGet("output_indices", i) << ";\n"
<< "var " << input_index_i << " = " << output_index_i << " * " << steps_i << " + " << starts_i << " + carry;\n"
<< "carry = " << input_index_i << " / " << input_shape_i << ";\n"
<< input_index_i << " = " << input_index_i << " % " << input_shape_i << ";\n"
<< "if (" << input.IndicesGet("uniforms.signs", i) << " < 0) {\n"
<< " " << input_index_i << " = " << input_shape_i << " - " << input_index_i << " - 1u + " << starts_i << ";\n"
<< "}\n"
<< input.IndicesSet("input_indices", i, input_index_i) << ";\n";
}

shader.MainFunctionBody() << output.SetByOffset("global_idx", input.GetByIndices("input_indices"));

return Status::OK();
}

Status Slice::ComputeInternal(ComputeContext& context) const {
// READ INPUTS
const Tensor* input_tensor = context.Input(0);
const TensorShape& input_shape = input_tensor->Shape();
int64_t input_rank = static_cast<int64_t>(input_shape.NumDimensions());

auto starts_raw = hasStartsAttr ? gsl::make_span(attr_starts_) : context.Input(1)->DataAsSpan<int64_t>();
auto ends_raw = hasEndsAttr ? gsl::make_span(attr_ends_) : context.Input(2)->DataAsSpan<int64_t>();

ORT_ENFORCE(starts_raw.size() == ends_raw.size(), "starts and ends must have the same size");

int input_count = context.InputCount();

const Tensor* axes_tensor = nullptr;
const Tensor* steps_tensor = nullptr;

if (input_count >= 4) {
// axes provided as input
axes_tensor = context.Input(3);
}

if (input_count == 5) {
// steps provided as input
steps_tensor = context.Input(4);
}

// Inject defaults if axes or steps not provided
std::vector<int64_t> axes_default;
if (axes_tensor == nullptr) {
// if axes not provided, set to [0, ..., len(starts)-1]
for (size_t i = 0; i < starts_raw.size(); i++) {
axes_default.push_back(i);
}
}
auto axes_raw = hasAxesAttr ? gsl::make_span(attr_axes_) : (axes_tensor == nullptr ? gsl::make_span(axes_default) : axes_tensor->DataAsSpan<int64_t>());

std::vector<int64_t> steps_default;
if (steps_tensor == nullptr) {
// if steps not provided, set to [1, ..., 1] of len(starts)
for (size_t i = 0; i < starts_raw.size(); i++) {
steps_default.push_back(1);
}
}
auto steps_raw = steps_tensor == nullptr ? gsl::make_span(steps_default) : steps_tensor->DataAsSpan<int64_t>();

// PROCESS INPUTS
std::vector<uint32_t> axes;
for (unsigned int i = 0; i < axes_raw.size(); i++) {
int64_t val = axes_raw[i];
if (val < 0) {
val += input_rank;
}
axes.push_back(static_cast<int32_t>(val));
}

std::vector<uint32_t> starts;
for (unsigned int i = 0; i < starts_raw.size(); i++) {
int64_t val = starts_raw[i];
if (val < 0) {
val += input_shape[axes[i]];
}

if (steps_raw[i] < 0) {
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]] - 1)));
} else {
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]])));
}
starts.push_back(static_cast<uint32_t>(val));
}

std::vector<uint32_t> ends;
for (unsigned int i = 0; i < ends_raw.size(); i++) {
int64_t val = ends_raw[i];
if (val < 0) {
val += input_shape[axes[i]];
}
if (steps_raw[i] < 0) {
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]] - 1)));
} else {
val = std::max(static_cast<int64_t>(0), std::min(val, static_cast<int64_t>(input_shape[axes[i]])));

Check warning on line 158 in onnxruntime/core/providers/webgpu/tensor/slice.cc

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <algorithm> for min [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webgpu/tensor/slice.cc:158: Add #include <algorithm> for min [build/include_what_you_use] [4]
}
ends.push_back(static_cast<uint32_t>(val));
}

// temporary steps vector to handle negative steps
std::vector<int32_t> steps_tmp;
for (unsigned int i = 0; i < steps_raw.size(); i++) {
if (steps_raw[i] >= std::numeric_limits<int32_t>::max()) {

Check warning on line 166 in onnxruntime/core/providers/webgpu/tensor/slice.cc

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <limits> for numeric_limits<> [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webgpu/tensor/slice.cc:166: Add #include <limits> for numeric_limits<> [build/include_what_you_use] [4]
steps_tmp.push_back(std::numeric_limits<int32_t>::max());
} else {
steps_tmp.push_back(static_cast<int32_t>(steps_raw[i]));
}
}

// Insert missing dimensions
if (static_cast<int64_t>(axes.size()) != input_rank) {
for (uint32_t i = 0; i < input_rank; i++) {
int idx = -1;
for (unsigned int j = 0; j < axes_raw.size(); j++) {
if (axes_raw[j] == i) {
idx = j;
break;
}
}
if (idx == -1) {
axes.insert(axes.begin() + i, i);
starts.insert(starts.begin() + i, 0);
ends.insert(ends.begin() + i, static_cast<uint32_t>(input_shape[i]));
steps_tmp.insert(steps_tmp.begin() + i, 1);
}
}
}

// retain the sign of the steps
std::vector<int32_t> signs;
for (unsigned int i = 0; i < steps_tmp.size(); i++) {
signs.push_back(steps_tmp[i] < 0 ? -1 : (steps_tmp[i] > 0 ? 1 : 0));
}

// Convert negative steps to positive steps and reverse starts and ends
for (unsigned int i = 0; i < steps_tmp.size(); i++) {
if (steps_tmp[i] < 0) {
float numSteps = static_cast<float>((static_cast<float>(ends[i]) - static_cast<float>(starts[i])) / static_cast<float>(steps_tmp[i]));
float newEnd = static_cast<float>(starts[i]);
float newStart = newEnd + numSteps * static_cast<float>(steps_tmp[i]);

starts[i] = static_cast<uint32_t>(newStart);
ends[i] = static_cast<uint32_t>(newEnd);
steps_tmp[i] = static_cast<int32_t>(-steps_tmp[i]);
}
}

// final steps vector of type unsigned int
std::vector<uint32_t> steps;
for (unsigned int i = 0; i < steps_tmp.size(); i++) {
steps.push_back(static_cast<uint32_t>(steps_tmp[i]));
}

// Reorder inputs in order of axis
std::vector<int32_t> signs_reordered;
std::vector<uint32_t> steps_reordered, starts_reordered;
for (unsigned int i = 0; i < axes.size(); i++) {
signs_reordered.push_back(0);
steps_reordered.push_back(0);
starts_reordered.push_back(0);
}
for (unsigned int i = 0; i < axes.size(); i++) {
int32_t dim = axes[i];
signs_reordered[dim] = signs[i];
steps_reordered[dim] = steps[i];
starts_reordered[dim] = starts[i];
}

// calculate output dims
std::vector<int64_t> output_dims;

Check warning on line 233 in onnxruntime/core/providers/webgpu/tensor/slice.cc

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <vector> for vector<> [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webgpu/tensor/slice.cc:233: Add #include <vector> for vector<> [build/include_what_you_use] [4]
for (unsigned int i = 0; i < axes.size(); i++) {
int32_t dim = axes[i];
float tmp = ceil((static_cast<float>(ends[dim]) - static_cast<float>(starts[dim])) / static_cast<float>(steps[dim]));
if (tmp < 0)
output_dims.push_back(0);
else
output_dims.push_back(static_cast<int64_t>(tmp));
}

TensorShape output_shape(output_dims);

auto* output_tensor = context.Output(0, output_shape);
uint32_t output_size = static_cast<uint32_t>(output_shape.Size());

if (output_size == 0) {
return Status::OK();
}

SliceProgram program{};
program
.AddInputs({{input_tensor, ProgramTensorMetadataDependency::TypeAndRank}})
.AddOutputs({output_tensor})
.SetDispatchGroupSize((output_size + WORKGROUP_SIZE - 1) / WORKGROUP_SIZE)
.AddUniformVariables({{output_size}, {starts_reordered}, {steps_reordered}, {signs_reordered}});
return context.RunProgram(program);
}

} // namespace webgpu
} // namespace onnxruntime
41 changes: 41 additions & 0 deletions onnxruntime/core/providers/webgpu/tensor/slice.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.

#pragma once

#include "core/providers/webgpu/webgpu_kernel.h"
#include "core/providers/webgpu/program.h"
#include <iostream>

Check warning on line 8 in onnxruntime/core/providers/webgpu/tensor/slice.h

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Found C++ system header after other header. Should be: slice.h, c system, c++ system, other. [build/include_order] [4] Raw Output: onnxruntime/core/providers/webgpu/tensor/slice.h:8: Found C++ system header after other header. Should be: slice.h, c system, c++ system, other. [build/include_order] [4]

namespace onnxruntime {
namespace webgpu {

class SliceProgram final : public Program<SliceProgram> {
public:
SliceProgram() : Program{"Slice"} {}

Status GenerateShaderCode(ShaderHelper& sh) const override;

WEBGPU_PROGRAM_DEFINE_UNIFORM_VARIABLES({"output_size", ProgramUniformVariableDataType::Uint32},
{"starts", ProgramUniformVariableDataType::Uint32},
{"steps", ProgramUniformVariableDataType::Uint32},
{"signs", ProgramUniformVariableDataType::Int32});
};

class Slice final : public WebGpuKernel {
public:
Slice(const OpKernelInfo& info) : WebGpuKernel(info) {
hasStartsAttr = info.GetAttrs("starts", attr_starts_).IsOK();
prathikr marked this conversation as resolved.
Show resolved Hide resolved
hasEndsAttr = info.GetAttrs("ends", attr_ends_).IsOK();
hasAxesAttr = info.GetAttrs("axes", attr_axes_).IsOK();
}

Status ComputeInternal(ComputeContext& context) const override;

private:
std::vector<int64_t> attr_starts_, attr_ends_, attr_axes_;

Check warning on line 36 in onnxruntime/core/providers/webgpu/tensor/slice.h

View workflow job for this annotation

GitHub Actions / Optional Lint C++

[cpplint] reported by reviewdog 🐶 Add #include <vector> for vector<> [build/include_what_you_use] [4] Raw Output: onnxruntime/core/providers/webgpu/tensor/slice.h:36: Add #include <vector> for vector<> [build/include_what_you_use] [4]
bool hasStartsAttr, hasEndsAttr, hasAxesAttr;
};

} // namespace webgpu
} // namespace onnxruntime
Original file line number Diff line number Diff line change
Expand Up @@ -663,10 +663,10 @@ std::unique_ptr<KernelRegistry> RegisterKernels() {
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kMSInternalNHWCDomain, 18, 18, Resize)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kMSInternalNHWCDomain, 19, Resize)>,

// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 1, 9, Slice)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 10, 10, Slice)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, Slice)>,
// BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 13, Slice)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 1, 9, Slice)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 10, 10, Slice)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 11, 12, Slice)>,
BuildKernelCreateInfo<ONNX_OPERATOR_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 13, Slice)>,

BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 1, 8, Flatten)>,
BuildKernelCreateInfo<ONNX_OPERATOR_VERSIONED_KERNEL_CLASS_NAME(kWebGpuExecutionProvider, kOnnxDomain, 9, 10, Flatten)>,
Expand Down
Loading
Loading