Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor dtypes #798

Merged
merged 3 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 38 additions & 2 deletions sparse/mlir_backend/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,43 @@

from . import levels
from ._conversions import asarray, from_constituent_arrays, to_numpy, to_scipy
from ._dtypes import asdtype
from ._dtypes import (
asdtype,
complex64,
complex128,
float16,
float32,
float64,
int8,
int16,
int32,
int64,
uint8,
uint16,
uint32,
uint64,
)
from ._ops import add

__all__ = ["add", "asarray", "asdtype", "to_numpy", "to_scipy", "levels", "from_constituent_arrays"]
__all__ = [
"add",
"asarray",
"asdtype",
"to_numpy",
"to_scipy",
"levels",
"from_constituent_arrays",
"int8",
"int16",
"int32",
"int64",
"uint8",
"uint16",
"uint32",
"uint64",
"float16",
"float32",
"float64",
"complex64",
"complex128",
]
2 changes: 1 addition & 1 deletion sparse/mlir_backend/_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def ndim(self) -> int:
return len(self.shape)

@property
def dtype(self) -> type[DType]:
def dtype(self) -> DType:
return self._storage.get_storage_format().dtype

@property
Expand Down
4 changes: 2 additions & 2 deletions sparse/mlir_backend/_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,12 @@ def fn_cache(f, maxsize: int | None = None):
return functools.wraps(f)(functools.lru_cache(maxsize=maxsize)(f))


def get_nd_memref_descr(rank: int, dtype: type[DType]) -> ctypes.Structure:
def get_nd_memref_descr(rank: int, dtype: DType) -> ctypes.Structure:
return _get_nd_memref_descr(int(rank), asdtype(dtype))


@fn_cache
def _get_nd_memref_descr(rank: int, dtype: type[DType]) -> ctypes.Structure:
def _get_nd_memref_descr(rank: int, dtype: DType) -> ctypes.Structure:
return rt.make_nd_memref_descriptor(rank, dtype.to_ctype())


Expand Down
11 changes: 4 additions & 7 deletions sparse/mlir_backend/_conversions.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@

level_props = LevelProperties(0)
if not arr.has_canonical_format:
level_props |= LevelProperties.NonOrdered | LevelProperties.NonUnique
level_props |= LevelProperties.NonOrdered

Check warning on line 107 in sparse/mlir_backend/_conversions.py

View check run for this annotation

Codecov / codecov/patch

sparse/mlir_backend/_conversions.py#L107

Added line #L107 was not covered by tests

coo_format = get_storage_format(
levels=(
Expand All @@ -130,17 +130,14 @@
case (Level(LevelFormat.Dense, _), Level(LevelFormat.Compressed, _)):
indptr, indices, data = arr.get_constituent_arrays()
if storage_format.order == (0, 1):
sps_arr = sps.csr_array((data, indices, indptr), shape=arr.shape)
else:
sps_arr = sps.csc_array((data, indices, indptr), shape=arr.shape)
return sps.csr_array((data, indices, indptr), shape=arr.shape)
return sps.csc_array((data, indices, indptr), shape=arr.shape)
case (Level(LevelFormat.Compressed, _), Level(LevelFormat.Singleton, _)):
_, coords, data = arr.get_constituent_arrays()
sps_arr = sps.coo_array((data, (coords[:, 0], coords[:, 1])), shape=arr.shape)
return sps.coo_array((data, (coords[:, 0], coords[:, 1])), shape=arr.shape)
case _:
raise RuntimeError(f"No conversion implemented for `{storage_format=}`.")

return sps_arr


def asarray(arr, copy: bool | None = None) -> Array:
if sps is not None and isinstance(arr, ScipySparseArray):
Expand Down
125 changes: 55 additions & 70 deletions sparse/mlir_backend/_dtypes.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,17 @@
import abc
import inspect
import dataclasses
import math
import sys
import typing

import mlir.runtime as rt
from mlir import ir

import numpy as np


class MlirType(abc.ABC):
@classmethod
@abc.abstractmethod
def _get_mlir_type(cls) -> ir.Type: ...
def _get_mlir_type(self) -> ir.Type: ...


def _get_pointer_width() -> int:
Expand All @@ -22,106 +21,92 @@ def _get_pointer_width() -> int:
_PTR_WIDTH = _get_pointer_width()


def _make_int_classes(namespace: dict[str, object], bit_widths: typing.Iterable[int]) -> None:
for bw in bit_widths:

class SignedBW(SignedIntegerDType):
np_dtype = getattr(np, f"int{bw}")
bit_width = bw

@classmethod
def _get_mlir_type(cls):
return ir.IntegerType.get_signless(cls.bit_width)

SignedBW.__name__ = f"Int{bw}"
SignedBW.__module__ = __name__

class UnsignedBW(UnsignedIntegerDType):
np_dtype = getattr(np, f"uint{bw}")
bit_width = bw

@classmethod
def _get_mlir_type(cls):
return ir.IntegerType.get_signless(cls.bit_width)

UnsignedBW.__name__ = f"UInt{bw}"
UnsignedBW.__module__ = __name__

namespace[SignedBW.__name__] = SignedBW
namespace[UnsignedBW.__name__] = UnsignedBW


@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class DType(MlirType):
np_dtype: np.dtype
bit_width: int

@classmethod
def to_ctype(cls):
return np.ctypeslib.as_ctypes_type(cls.np_dtype)

@property
@abc.abstractmethod
def np_dtype(self) -> np.dtype:
raise NotImplementedError

class FloatingDType(DType): ...
def to_ctype(self):
return rt.as_ctype(self.np_dtype)


class Float64(FloatingDType):
np_dtype = np.float64
bit_width = 64
@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class IeeeRealFloatingDType(DType):
@property
def np_dtype(self) -> np.dtype:
return np.dtype(getattr(np, f"float{self.bit_width}"))

@classmethod
def _get_mlir_type(cls):
return ir.F64Type.get()
def _get_mlir_type(self) -> ir.Type:
return getattr(ir, f"F{self.bit_width}Type").get()


class Float32(FloatingDType):
np_dtype = np.float32
bit_width = 32
float64 = IeeeRealFloatingDType(bit_width=64)
float32 = IeeeRealFloatingDType(bit_width=32)
float16 = IeeeRealFloatingDType(bit_width=16)

@classmethod
def _get_mlir_type(cls):
return ir.F32Type.get()

@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class IeeeComplexFloatingDType(DType):
@property
def np_dtype(self) -> np.dtype:
return np.dtype(getattr(np, f"complex{self.bit_width}"))

class Float16(FloatingDType):
np_dtype = np.float16
bit_width = 16
def _get_mlir_type(self) -> ir.Type:
return ir.ComplexType.get(getattr(ir, f"F{self.bit_width // 2}Type").get())

@classmethod
def _get_mlir_type(cls):
return ir.F16Type.get()

complex64 = IeeeComplexFloatingDType(bit_width=64)
complex128 = IeeeComplexFloatingDType(bit_width=128)

class IntegerDType(DType): ...

@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class IntegerDType(DType):
def _get_mlir_type(self) -> ir.Type:
return ir.IntegerType.get_signless(self.bit_width)

class UnsignedIntegerDType(IntegerDType): ...

@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class UnsignedIntegerDType(IntegerDType):
@property
def np_dtype(self) -> np.dtype:
return np.dtype(getattr(np, f"uint{self.bit_width}"))

class SignedIntegerDType(IntegerDType): ...

int8 = UnsignedIntegerDType(bit_width=8)
int16 = UnsignedIntegerDType(bit_width=16)
int32 = UnsignedIntegerDType(bit_width=32)
int64 = UnsignedIntegerDType(bit_width=64)

_make_int_classes(locals(), [8, 16, 32, 64])

@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class SignedIntegerDType(IntegerDType):
@property
def np_dtype(self) -> np.dtype:
return np.dtype(getattr(np, f"int{self.bit_width}"))

class Index(DType):
np_dtype = np.intp

@classmethod
def _get_mlir_type(cls):
return ir.IndexType.get()
uint8 = SignedIntegerDType(bit_width=8)
uint16 = SignedIntegerDType(bit_width=16)
uint32 = SignedIntegerDType(bit_width=32)
uint64 = SignedIntegerDType(bit_width=64)


IntP: type[SignedIntegerDType] = locals()[f"Int{_PTR_WIDTH}"]
UIntP: type[UnsignedIntegerDType] = locals()[f"UInt{_PTR_WIDTH}"]
intp: SignedIntegerDType = locals()[f"int{_PTR_WIDTH}"]
uintp: UnsignedIntegerDType = locals()[f"uint{_PTR_WIDTH}"]


def isdtype(dt, /) -> bool:
return isinstance(dt, type) and issubclass(dt, DType) and not inspect.isabstract(dt)
return isinstance(dt, DType)


NUMPY_DTYPE_MAP = {np.dtype(dt.np_dtype): dt for dt in locals().values() if isdtype(dt)}


def asdtype(dt, /) -> type[DType]:
def asdtype(dt, /) -> DType:
if isdtype(dt):
return dt

Expand Down
17 changes: 12 additions & 5 deletions sparse/mlir_backend/_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,26 +3,33 @@
import mlir.execution_engine
import mlir.passmanager
from mlir import ir
from mlir.dialects import arith, func, linalg, sparse_tensor, tensor
from mlir.dialects import arith, complex, func, linalg, sparse_tensor, tensor

from ._array import Array
from ._common import fn_cache
from ._core import CWD, DEBUG, MLIR_C_RUNNER_UTILS, ctx, pm
from ._dtypes import DType, FloatingDType
from ._dtypes import DType, IeeeComplexFloatingDType, IeeeRealFloatingDType, IntegerDType


@fn_cache
def get_add_module(
a_tensor_type: ir.RankedTensorType,
b_tensor_type: ir.RankedTensorType,
out_tensor_type: ir.RankedTensorType,
dtype: type[DType],
dtype: DType,
rank: int,
) -> ir.Module:
with ir.Location.unknown(ctx):
module = ir.Module.create()
# TODO: add support for complex dialect/dtypes
arith_op = arith.AddFOp if issubclass(dtype, FloatingDType) else arith.AddIOp
if isinstance(dtype, IeeeRealFloatingDType):
arith_op = arith.AddFOp
elif isinstance(dtype, IeeeComplexFloatingDType):
arith_op = complex.AddOp
elif isinstance(dtype, IntegerDType):
arith_op = arith.AddIOp
else:
raise RuntimeError(f"Can not add {dtype=}.")

Check warning on line 31 in sparse/mlir_backend/_ops.py

View check run for this annotation

Codecov / codecov/patch

sparse/mlir_backend/_ops.py#L31

Added line #L31 was not covered by tests

dtype = dtype._get_mlir_type()
ordering = ir.AffineMap.get_permutation(range(rank))

Expand Down
6 changes: 3 additions & 3 deletions sparse/mlir_backend/levels.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ class StorageFormat:
order: tuple[int, ...]
pos_width: int
crd_width: int
dtype: type[DType]
dtype: DType

@property
def storage_rank(self) -> int:
Expand Down Expand Up @@ -162,7 +162,7 @@ def get_storage_format(
order: typing.Literal["C", "F"] | tuple[int, ...],
pos_width: int,
crd_width: int,
dtype: type[DType],
dtype: DType,
) -> StorageFormat:
levels = tuple(levels)
if isinstance(order, str):
Expand All @@ -186,7 +186,7 @@ def _get_storage_format(
order: tuple[int, ...],
pos_width: int,
crd_width: int,
dtype: type[DType],
dtype: DType,
) -> StorageFormat:
return StorageFormat(
levels=levels,
Expand Down
17 changes: 16 additions & 1 deletion sparse/mlir_backend/tests/test_simple.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import math
import typing
from collections.abc import Iterable

import sparse

Expand All @@ -24,6 +25,8 @@
np.uint64,
np.float32,
np.float64,
np.complex64,
np.complex128,
],
)

Expand Down Expand Up @@ -67,6 +70,18 @@ def sampler_real_floating(size: tuple[int, ...]):

return sampler_real_floating

if np.issubdtype(dtype, np.complexfloating):
float_dtype = np.array(0, dtype=dtype).real.dtype

def sampler_complex_floating(size: tuple[int, ...]):
real_sampler = generate_sampler(float_dtype, rng)
if not isinstance(size, Iterable):
size = (size,)
float_arr = real_sampler(tuple(size) + (2,))
return float_arr.view(dtype)[..., 0]

return sampler_complex_floating

raise NotImplementedError(f"{dtype=} not yet supported.")


Expand Down Expand Up @@ -212,7 +227,7 @@ def test_coo_3d_format(dtype):
levels=(
sparse.levels.Level(sparse.levels.LevelFormat.Compressed, sparse.levels.LevelProperties.NonUnique),
sparse.levels.Level(sparse.levels.LevelFormat.Singleton, sparse.levels.LevelProperties.NonUnique),
sparse.levels.Level(sparse.levels.LevelFormat.Singleton, sparse.levels.LevelProperties.NonUnique),
sparse.levels.Level(sparse.levels.LevelFormat.Singleton, sparse.levels.LevelProperties(0)),
),
order="C",
pos_width=64,
Expand Down
Loading